\"\"

\

Elimination method:

\

Given equations are,

\

\"\" ----------(1)

\

\"\"----------(2)

\

First equation has multiply each side by 5.

\

\"\"                    (First equation)

\

\"\"        (Apply distributive property: \"\")

\

\"\"     (Multiply: \"\")

\

\"\"-------(3)           

\

(2) and (3) equations when the coefficients of a variable \"\" and \"\" are opposites, adding the equations will eliminate the variable.\"\"

\

Adding (2) and (3) equations will eliminate the variable y.

\

\"\"           (Adding (2) and (3) equations)

\

Apply division property of equality: If a = b then \"\".

\

\"\"                      (Divide each side by 12)

\

\"\"                              (Cancel common terms)

\

\"\"                                   (Divide: \"\")\"\"

\

Substitute \"\" for x in either equation to find y.

\

\"\"                          (Second equation)

\

\"\"                    (Substitute  \"\")

\

\"\"                        (Multiply: \"\")

\

\"\"                           (Apply commutative property: \"\")\"\"

\

Apply addition property of equality: If a = b then \"\".

\

\"\"          (Add 14 to each side)

\

\"\"                     (Apply additive inverse property: \"\")

\

\"\"                            (Apply additive identity property: \"\")

\

\"\"                                     (Add: \"\")\"\"

\

\"\"                                (Divide each side by 5)

\

\"\"                                     (Cancel common terms)

\

\"\"                                                        (Divide: \"\")\"\"

\

Check the solution:

\

To Check, substitute \"\" and  \"\" in either equation.

\

\"\"                                 (First equation)

\

\"\"                              (Substitute \"\" and  \"\")

\

\"\"                                     (Subtract: \"\")

\

The solution  \"\" is true.\"\"

\

The solution is \"\".