Step 1:

\

The equations are \"\" and \"\".

\

The volume of the solid generated revolving about the \"\"- axis.

\

Washer method:

\

\"\"

\

The outer radius of revolution is \"\".

\

The inner radius of revolution is \"\"

\

Substitute \"\" and \"\" in \"\".

\

\"\".

\

\"\"

\

Integrate between 0 and 1.

\

\"\"

\

\"\"

\

Solve the integral by using substitution method.

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\" and \"\" in \"\".

\

\"\"

\

\"\"

\

Apply formula \"\".

\

\"\"

\

Back substitute \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The volume of solid is \"\" cubic units.

\

Solution:

\

The volume of solid is \"\" cubic units.

\

 

\

\

\

\