(5)

\

Step 1:

\

The integral is \"\".

\

Sum and difference rule of integral : \"\".

\

\"\"

\

Integral formula of sine function : \"\".

\

Integral formula of exponential function : \"\".

\

                                           \"\"

\

\"\".

\

Solution :

\

\"\".

\

 

\

(6)

\

Step 1:

\

The integral is \"\".

\

Rewrite the integral.

\

\"\"

\

Consider \"\".

\

\"\"

\

Substitute \"\" and \"\" in the above integral.

\

                                     \"\"

\

Power rule of integral formula : \"\".

\

                                      \"\"

\

Replace \"\" in the above expression.

\

                                      \"\"

\

\"\".

\

Solution :

\

\"\".

\

 

\

(7)

\

Step 1:

\

The integral is \"\".

\

Consider \"\"

\

\"\"

\

Substitute \"\" and \"\"in the above integral.

\

\"\"

\

Power rule of integral formula : \"\".

\

                                \"\"

\

Replace \"\" in the above expression.

\

                                 \"\"

\

\"\".

\

Solution :

\

\"\".

\

 

\

(8)

\

Step 1:

\

The integral is \"\".

\

Rewrite the integral.

\

\"\"

\

Consider the function \"\".

\

Now use the partial fraction method :

\

\"\"

\

Compare the coefficients of x terms.

\

\"\"                    (1)

\

Compare the constant terms.

\

\"\"          (2)

\

Multiple equation (1) with 3.

\

\"\"            (3)

\

Slove equation (2) and (3).

\

\"\"

\

\"\".

\

Substitute \"\" in equation (1).

\

\"\"

\

\"\".

\

Step 2:

\

\"\"

\

Integral formula : \"\".

\

                                    \"\"

\

\"\".

\

Solution :

\

\"\".