The limit  is \"\".

\

The above expression is in \"\" form as \"\" tends to zero. \ \

\

Thus, find the limit by L-Hospital rule.

\

L-Hospital rule:

\

Suppose \"image\" or \"image\", then \"image\" 

\

\

Apply L-Hospital rule. \ \

\

Here \"\" and \"\".

\

\"\".

\

Differentiate on each side.

\

\"\".

\

\"\".

\

Differentiate on each side.

\

\"\".

\

\"\"

\

\"\".

\

(b)

\

 

\

The limit  is \"\".

\

Consider \"\".

\

To estimate the value of limit, construct a table with larger values of  \"\" by incresing rapidly.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\" \

\"\"

\
\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"\"\"
\

Observe the table results,

\

As the value of \"\" increses then \"\" value is close to zero. \ \

\

Thus, \"\".

\

(c)

\

The limit  is \"\".

\

Apply squeeze theorem:

\

Suppose that \"\" then 

\

\"\", \"\"

\

As the range of \"\" is \"\".

\

\"\".

\

Divide on each side by \"\".

\

\"\"

\

Apply infinite limits on each side.

\

 

\

\"\"

\

Since \"\".

\

Therefore, by squeeze theorem \"\".

\

 

\

 

\

 

\

 

\

 

\

 

\