\"\"

The equation is \"\\int.

The integrand is \"\\frac{x^2-1}{x^{\\frac{3}{2}}}\".

Consider the right side part \"f(x)=\\frac{2(x^2+3)}{3\\sqrt{x}}+C\".

Apply derivative on each side with respect to \"x\".

\"\\frac{d}{dx}f(x)=\\frac{d}{dx}\\left

\"f\'(x)=\\frac{d}{dx}\\left

\"=\\frac{2}{3}\\frac{d}{dx}\\left

\"=\\frac{2}{3}\\frac{d}{dx}\\left

\"=\\frac{2}{3}\\frac{d}{dx}\\left

\"=\\frac{2}{3}\\frac{d}{dx}\\left

Apply power rule of derivatives \"\\frac{d}{dx}x^{n}=nx^{n-1}\".

\"=\\frac{2}{3}\\left

\"=\\frac{2}{3}\\left

\"=\\frac{2}{3}\\left

\"=\\left

\"=\\left

\"=\\frac{x^{\\frac{1}{2}}x^{\\frac{3}{2}}-1}{x^{\\frac{3}{2}}}\"

\"=\\frac{x^{\\frac{1}{2}+\\frac{3}{2}}-1}{x^{\\frac{3}{2}}}\"

\"=\\frac{x^{\\frac{4}{2}}-1}{x^{\\frac{3}{2}}}\"

\"f\'(x)=\\frac{x^{2}-1}{x^{\\frac{3}{2}}}\".

The derivative of right side is equal to the integrand.

\"\\frac{d}{dx}\\left.

 

\"\"

\"\\frac{d}{dx}\\left.