\"\"

\

If \"\" is a vector field on \"\" and the partial derivatives of P , Q  and R  all are exists, then the curl of F is 

\

\"\", or

\

\"\"

\

And the divergence of F is \"\".

\

\"\"

\

(a)

\

The vector field is \"\".

\

Compare \"\" with \"\".

\

\"\" and \"\".

\

Find the curl of the vector field F.

\

\"\"

\

The curl of the vector field F is \"\"

\

\"\"

\

(b)

\

Consider \"\".

\

Apply partial derivative on each side with respect to x.

\

\"\"

\

Consider \"\".

\

Apply partial derivative on each side with respect to y.

\

\"\"

\

Consider \"\".

\

Apply partial derivative on each side with respect to z.

\

\"\"

\

\"\"

\

Find the divergence of the function.

\

\"\"

\

Substitute corresponding values.

\

\"\"

\

The divergence of the vector field F is \"\"

\

\"\"

\

(a) The curl of the vector field F is \"\".

\

(b) The divergence of the vector field F is \"\"