\"\"

\

The function is \"\"\"\".

\

Rolle\"\"s Theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\" is continuous on \"\".

\

2. \"\" is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

\"\"

\

The function is \"\".

\

The function \"\" is continuous on the interval \"\", because it is a polynomial.

\

Differentiate \"\" on each side with respect to \"\".

\

\"\"

\

\"\" is differentiable on the open interval \"\", which satisfies the Rolle\"\"s Theorem.

\

\"\"

\

Check \"\" at the end points :

\

Substitute \"\" in \"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

\"\" , hence Roll\"\"s theorem is applicable on \"\".

\

\"\"

\

Find the value of \"\", such that \"\".

\

\"\"

\

From \"\" then \"\".

\

\"\"

\

If \"\", then \"\".

\

\"\" is not in the interval \"\".

\

Hence it is not considered.

\

If \"\", then \"\".

\

Therefore \"\".

\

\"\"

\

\"\".