(a)

Find \"\\small.

Observe the graph.

Left hand limit \"\\small :

As \"x\" tends to \"-7\" from left side, \"f(x)\" approaches to negative large number.

So \"\\small.

Right hand limit \"\\small :

As \"x\" tends to \"-7\" from right side, \"f(x)\" approaches to negative large number.

So \"\\lim_{x\\rightarrow-7^+}f(x)=-\\infty\".

Left hand limit and right hand limit are equal, \"\\small is exist.

\"\\small.

(b)

Find \"\\small.

Observe the graph.

Left hand limit \"\\small :

As \"x\" tends to \"-3\" from left side, \"f(x)\" approaches to positive large number.

So \"\\small.

Right hand limit \"\\small :

As \"x\" tends to \"-3\" from right side, \"f(x)\" approaches to positive large number.

So \"\\lim_{x\\rightarrow-3^+}f(x)=\\infty\".

Left hand limit and right hand limit are equal, \"\\small is exist.

\"\\small.

(c)

Find \"\\small.

Observe the graph.

Left hand limit \"\\small :

As \"x\" tends to \"0\" from left side, \"f(x)\" approaches to positive large number.

So \"\\small.

Right hand limit \"\\small :

As \"x\" tends to \"0\" from right side, \"f(x)\" approaches to positive large number.

So \"\\lim_{x\\rightarrow0^+}f(x)=\\infty\".

Left hand limit and right hand limit are equal, \"\\small is exist.

\"\\small.

(d)

Find \"\\small.

Observe the graph.

As \"x\" tends to \"6\" from left side, \"f(x)\" approaches to negative large number.

So \"\\small.

(e)

Find \"\\small.

Observe the graph.

As \"x\" tends to \"6\" from right side, \"f(x)\" approaches to positive large number.

So \"\\lim_{x\\rightarrow6^+}f(x)=\\infty\".

(f)

Find the vertical asymptote.

Vertical asymptote :

The vertical asymptote is a line equation, toward which a function \"f(x)\" approaches to either positive or negative infinity.

Observe the graph.

As \"x\" tends to \"-7\" from left side, \"f(x)\" approaches to negative large number.

So \"\\small.

As \"x\" tends to \"-3\" from left side, \"f(x)\" approaches to positive large number.

So \"\\small.

As \"x\" tends to \"0\" from right side, \"f(x)\" approaches to positive large number.

So \"\\lim_{x\\rightarrow0^+}f(x)=\\infty\".

As \"x\" tends to \"6\" from left side, \"f(x)\" approaches to negative large number.

So \"\\small.

From the above statements, it satisfies the definition of vertical asymptotes.

The vertical asymptotes are \"\\small, \"\\small, \"\\small and \"\\small.

(a) \"\\small.

(b) \"\\small.

(c) \"\\small.

(d) \"\\small.

(e) \"\\lim_{x\\rightarrow6^+}f(x)=\\infty\".

(f) The vertical asymptotes are \"\\small, \"\\small, \"\\small and \"\\small.