\"\"

In equilateral triangle all sides are equal.

Consider \"x\" to be one of the side of a triangle.

Find the height of the triangle using the figure shown below.

\"\"

From Pythagorean theorem,

\"x^2=\\textrm{height}^2+(\\frac{x}{2})^2\"

\"\\textrm{height}^2=x^2-(\\frac{x}{2})^2\"

\"\\textrm{Height}=\\sqrt{x^2-(\\frac{x}{2})^2}\"

                 \"=\\sqrt{x^2-\\frac{x^2}{4}}\"

                 \"=\\sqrt{\\frac{4x^2-x^2}{4}}\"

                 \"=\\sqrt{\\frac{3x^2}{4}}\"

                 \"=\\frac{\\sqrt{3}}{2}x\"

\"\\textrm{Height}=\\frac{\\sqrt{3}}{2}x\".

Area of a triangle is \"A=\\frac{1}{2}(\\textrm{Base})(\\textrm{Height})\".

\"A=\\frac{1}{2}(x)(\\frac{\\sqrt{3}}{2}x)\"

      \"=\\frac{\\sqrt{3}}{4}x^2\"

\"A(x)=\\frac{\\sqrt{3}}{4}x^2\".

Domain:

The area of the function is \"A(x)=\\frac{\\sqrt{3}}{4}x^2\".

All possible values of \"x\" is domain of the function.

Area of the triangle should be a greater than zero.

\"\\frac{\\sqrt{3}}{4}x^2>0\"

\"x^2>0\"

\"x>0\"

The domain of the function is \"x>0\".

\"A(x)=\\frac{\\sqrt{3}}{4}x^2\".

The domain of the function \"A(x)=\\frac{\\sqrt{3}}{4}x^2\" is \"x>0\".