The logarithmic expression is
. \ \
Find the expression. \ \
\Case (i): \ \
\
(First expression) \ \
(Let the logarithm equal
) \ \
(Logarithm formula:
if and only if
) \ \
(Substitute:
) \ \
Equality for exponential functions property:
if and only if
. \ \
. \ \
(Substitute
) \ \
Case (ii): \ \
\
(Second expression) \ \
(Let the logarithm equal
) \ \
(Logarithm formula:
if and only if
) \ \
(Substitute:
and
) \ \
Equality for exponential functions property:
if and only if
. \ \
. \ \
(Simplify) \ \
(Substitute
) \ \
Case (iii): \ \
\
(Three expression) \ \
(Let the logarithm equal
) \ \
(Logarithm formula:
if and only if
) \ \
Equality for exponential functions property:
if and only if
. \ \
. \ \
(Substitute
) \ \
Case (iv): \ \
\
(Four expression) \ \
(Let the logarithm equal
) \ \
(Logarithm formula:
if and only if
) \ \
(Substitute:
and
) \ \
Equality for exponential functions property:
if and only if
. \ \
. \ \
(Simplify) \ \
(Substitute
) \ \
Case (v):
\
(Fifth expression) \ \
(Let the logarithm equal
) \ \
(Logarithm formula:
if and only if
) \ \
(Substitute:
and
) \ \
Equality for exponential functions property:
if and only if
. \ \
. \ \
(Simplify) \ \
(Substitute
) \ \
Since add all cases of the expression to find the original expression value. \ \
\
\ \
(Substitute
,
,
,
and
) \ \
(LCM is
) \ \
(Add) \ \
(Simplify) \ \
. \ \
Simplified value of the expression is
.