The given limit is
.
Compare the limit with
, So
.
Now choose values of x close to 3, arbitrarily starting with 2.99.
\Then choose values of x > 3, starting with 3.01, that get closer to 3.
\Finally evaluate f at each choice to obtain table below.
\| \
x \ | \
\
2.99 \ | \
\
2.999 \ | \
\
2.9999 \ | \
\
| \
\
3.0001 \ | \
\
3.001 \ | \
\
3.0 \ | \
| \
| \
2.003344 | \ \
2.000333444 \ | \
\
2.000033334444 \ | \
\
| \
\
1.99996666 \ | \
\
1.999666 \ | \
\
2.0 \ | \
Now from above table we infer that as x gets closer to 3 the value of f(x) closer to 2..
\Then the value of
.
To check the solution of
.
Apply formula:
.


Substitute x = 3.
\
.