The differential equation is
and initial condition is
.
The exact solution
.
Find the exact value of
at
.
.
Substitute
in
.
.
.
.
.
.
.
Find the
values when
at
.
The function is
.
Passing through the point
.
Using a step of
.
Euler
s method:
.
and
.
The function is
.
Substitute
and
in
.
.
.
.

.
Substitute
,
and
in
.
.
.
.
.
.
.
.
Find the
values when
at
.
Substitute
and
.
.
.
.






.
Substitute
,
and
in
.
.
.
.
.
.
.
.
.
.
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \