(a)
\The diffrential equation is
.
.
Initial condition is
.
The value of
is
.
.
Euler Method :
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
Substiute the values
and
.
.
(b)
\The diffrential equation is
.







Multiply each side by negative one.
\
.
The general solution is
.
Substiute the values
in the general solution to find the value of
.

Passing throught the point
.
Using a step of
Using
and
.




Therefore,
.
(c)
\Compare the solutions at
value.
The solution at
is
.
The solution at
is
.
Error :
.
(a)
\
.
(b)
\The general solution is
.
(c)
\Error :
.