The series is
.
(a)
\Consider the fraction
.
Solve the fraction using partial fractions.
\
.



Equate the constant terms.
\
.
Equate the coefficients of
.


Substitute
.
.
.

.
The sum of the series
is



.
Find
.


.
.
(b)
\Graph the partial sum function is
.
Observe the graph:
\Tabulate the
values for different values of
.
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
(c)
\Find the first ten terms of the sequence.
\The sum of series is
.
If
then
.
If
then
.
If
then
.
If
then
.
If
then
.
If
then
.
If
then
.
If
then
.
If
then
.
If
then
.
Graph :
\Graph the values
.

(d)
\The terms of the series decrease in magnitude slowly.
\So, the sequence of partial sums approaches the sum slowly.
\(a)
.
(b)
\![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
(c)
\Graph :
\Graph the values
.

(d) The terms of the series decrease in magnitude slowly.So, the sequence of partial sums approaches the sum slowly.