The integral is
.
Let
, then
.
Substitute corresponding values in the
.

.
Consider
.
Partial fractions decomposition of the integrand function :
\
Compare
coefficients on each side.
.
Compare constant terms on each side.
\
.
Substitute
in above equation.

.
If
, then
.
Substitute the values of
and
in equation (2).


Substitute above result in (1).
\
Substitute
in above equation.
.
.