(a) Complete the table.
\First number ![]() | \
Second Number | \Product ![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
(b)
\First number ![]() | \
Second Number | \Product ![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
Observe the above table :
\The maximum volume occurs at
and
.
(c) Find the product function.
\First number is
and the second number
.
The product function is
.
.
(d) Graph the function
and locate the maximum point.
Graph of the function
:
(e) The function is
.
Apply the derivative on each side with respect to
.

Find the critical numbers by equating derivative to zero.
\


The critical number is
.
Substitute
in
.


.


is maximum when
.
Find the two numbers:
\First number is
.
Second number
.
The two numbers are
and
.
(a) and (b)
\First number ![]() | \
Second Number | \Product ![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
(c)
.
(d) Graph of the function
:
(e) The two numbers are
and
.