The integral expression
converges.
Consider
.
Let
.
Differentiate on each side.
\
Substitute corresponding values in the integral.
\

If
, then 
Substitute above values in
.
Therefore,
.



Consider
.
Apply L-Hospital rule to find the limit, since the expression tends to indeterminate form
.
Property of limits :
.

.
Substitute above result in equation
.

If
, then above expression tends to
.
If
, then expression tends to
.
If
, then above expression tends to a finite number
.
If
, Integral tends to a finite number
.