Welcome :: Homework Help and Answers :: Mathskey.com

Recent Visits

    
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

800,193 users

Trigonometry Help!!?

0 votes
A.Use special triangles to show these are true.
sin (225°) = sin (-45°)
cos (30°) = cos (-30°)
tan (-60°) = tan (120°)

B.For 120°, show that tan T = sin T/cos T.

C.Solve the below for 0° < t < 360°

2cost+√3=0
cost=0
2tant=2
2sin3t-1=0

D. Prove identities:
cotT sinT = cosT
sin2T sec2T = tan2T
asked Jul 24, 2014 in TRIGONOMETRY by anonymous

4 Answers

0 votes

B.

The angle θ = T = 120o lies in second quadrant (90o ≤ θ ≤ 180o) and sin(θ) is positive and cos(θ) and tan(θ) are negative in second quadrant.

Left hand side expression = tan(T)

                                                = tan(120o)

                                                = tan(90o + 30o)

                                                = - cot(30o)                                      [tan(90o + θo) = - tan(θ)]

                                                = - √3.

Right hand side expression = sin(T)/cos(T)

                                                = sin(120o) / cos(120o)

                                                = sin(90o + 30o) / cos(90o + 30o)

Since sin(90o + θo) = cos(θ) and cos(90o + θo) = - sin(θ).

                                                = cos(30o) / [- sin(30o)]

                                                = (√3/2) / (- 1/2)

                                                = - √3.

Therefore, tan(T) = sin(T) / cos(T).

 

answered Jul 28, 2014 by casacop Expert
0 votes

A.

Statement : sin(225o) = sin(-45o).

Left hand side expression = sin(225o).

The angle θ = 225o lies in third quadrant (180o ≤ θ ≤ 270o) and sin(θ) is negative in third quadrant.

sin(225o) = sin(180o + 45o)

               = - sin(45o)                                       [sin(180o + θ) = - sin (θ)]

               = sin(- 45o)                                       [- sin(θ) = sin(- θ)]

              = Right hand side expression.

Therefore, the above statement is true.

 

Statement : cos(30o) = cos(-30o).

Right hand side expression = cos(-30o).

                                          = cos(30o)              [cos(-θ) = cos(θ)]

                                          = Left hand side expression.

Therefore, the above statement is true.

 

Statement : tan(-60o) = tan(120o).

Right hand side expression = tan(120o).

The angle θ = 120o lies in second quadrant (90o ≤ θ ≤ 180o) and sin(θ) is negative in second quadrant.

tan(120o) =tan(180o - 60o)

               = - tan(60o)                                       [tan(90o + θ) = - cot(θ)]

               = tan(- 60o)                                       [- tan(θ) = tan(- θ)]

               = Left hand side expression.

Therefore, the above statement is true.

answered Jul 29, 2014 by casacop Expert
edited Jul 29, 2014 by casacop
0 votes

C.

Equation : 2 cos(t) + √3 = 0 and 0o < t < 360o.

⇒ cos(t) = - (√3)/2

cos(t) is negative in second and third quadrant.

In second quadrant (90o < t < 180o),

cos(t) = - (√3)/2

           = - cos(30o)

           = cos(180o - 30o)                           [ - cos(θ) = cos(180o - θ) ]

cos(t) = cos(150o)

⇒ t = 150o.

In third quadrant (180o < t < 270o),

cos(t) = - (√3)/2

           = - cos(30o)

           = cos(180o - 30o)                           [ - cos(θ) = cos(180o + θ) ]

cos(t) = cos(210o)

⇒ t = 210o.

The solutions in the interval (0o, 360o) are 150o and 210o.

 

Equation : cos(t) = 0 and 0o < t < 360o.

⇒ cos(t) = 0

cos(t) is positive in first and fourth quadrant.

In second quadrant (0o < t < 90o),

cos(t) = cos(90o)

⇒ t = 90o.

In fourth quadrant (270o < t < 360o),

cos(t) = 0

           = cos(90o)

           = cos(360o - 90o)                           [ cos(θ) = cos(360o - θ) ]

cos(t) = cos(270o)

⇒ t = 270o.

The solutions in the interval (0o, 360o) are 90o and 270o.

 

Equation : 2 tan(t) = 2 and 0o < t < 360o.

⇒ tan(t) = 1

tan(t) is positive in first and third quadrant.

In first quadrant (0o < t < 90o),

tan(t) = 1

tan(t) = tan(45o)

⇒ t = 45o.

In third quadrant (180o < t < 270o),

tan(t) = 1

           = tan(45o)

           = tan(180o + 45o)                           [ tan(θ) = tan(180o + θ) ]

tan(t) = tan(225o)

⇒ t = 225o.

The solutions in the interval (0o, 360o) are 45o and 225o.

 

Equation : 2 sin(3t) - 1 = 0 and 0o < t < 360o.

⇒ sin(3t) = 1/2

Let 3t = θ.

The sin(θ) is positive in first and second quadrant.

In first quadrant (0o < θ < 90o),

sin(θ) = 1/2

sin(θ) = sin(30o)

⇒ θ = 30o ⇒ 3t = 30o ⇒ t = 10o.

In second quadrant (90o < θ < 180o),

sin(θ) = 1/2

            = sin(30o)

           = sin(180o - 30o)                           [ sin(θ) = sin(180o - θ) ]

sin(θ) = sin(150o)

⇒ θ = 150o ⇒ 3t = 150o ⇒ t = 50o.

The solutions in the interval (0o, 360o) are 10o and 50o.

answered Jul 29, 2014 by casacop Expert
0 votes

(D).

Identity : cot(T) * sin(T) = cos(T).

Left hand side expression = cot(T) * sin(T)

                                        = [ cos(T) / sin(T) ] * sin(T) [ Reciprocal identity : cot(θ) = cos(θ) / sin(θ) ]

                                        = cos(T)

                                        = Left hand side expression.

Therefore, Identity is proved.

 

Identity : sin(2T) * sec(2T) = tan(2T).

Left hand side expression = sin(2T) * sec(2T)

                                        = sin(2T) / cos(2T)  [ Reciprocal identity : sec(θ) = 1/cos(θ) ]

                                        = tan(2T)                [ Reciprocal identity : sin(θ) / cos(θ) = tan(θ) ]

                                        = Right hand side expression.

Therefore, Identity is proved.

answered Jul 29, 2014 by casacop Expert

Related questions

asked Jul 11, 2014 in TRIGONOMETRY by anonymous
asked May 18, 2014 in TRIGONOMETRY by anonymous
asked May 13, 2014 in TRIGONOMETRY by anonymous
asked Dec 22, 2014 in TRIGONOMETRY by anonymous
...